












(a) SA-Net feature maps (b) SAT-Net feature maps

Fig. 4: Visualizations of feature maps with and without Conv-LSTM module.

(a) SA-Net attention maps (b) SAT-Net attention maps

Fig. 5: Self-attention maps with the supervision of AU labels

the state-of-the-art performance on BP4D and DISFA. Our
experiments have also explained how attention and temporal
fusion work inside the network.

Our future work will address the data unbalance issue from
the datasets in order to improve the training of our network.
And avoiding over®tting is also critical for stable training in
AU detection, which will be explored in our future work.
Moreover, to make the attention module more stable, we will
further explore landmark information so as to supervise the
attention training along with the self-learning based on the
supervision of labeled AUs.
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